%9090 90.0:.9:0.0.0.90<
SRR
CHCITIICITIICC

DVA339 HT18 — LECTURE 1 | ocicton lexical encys

PRACTICALITIES

Lectures Tuesday 9:15 — 12:00 and Thursday 13:15 = 16:00

= 3 hours

" to enable more exercises, discussion, and live coding

Possibly booked labs — looking into room availability
* Fridays 13-15, and
* if you have questions talk to me in connection with the lecture, or

= send me an email

EXAMINATION

Written exam, 2.5 credits
* more theoretical, examines understanding of concepts used in labs
* no book

Written assignment, 1 credit
" two a4 pages

" suggested topics on homepage — let me know if you select your own

Labs, 4 credits
* Lab 1: two parts, handwritten parser and lexer

* Lab 2: five parts, generated lexer and parser, pretty printer, evaluator, type checker and code generation.
= quite a bit of coding, start in good time!

Work in groups of twol!
* discuss in larger groups

COURSE BOOK

Modern Compiler Implementation in Java, Andrew W. Appel
* Object oriented

Course language C#
= examples and code skeletons

" suggested implementation language

Other possibilities (support given on a best effort basis)
* F# (great)

Recommended development environments
* Visual Studio (Code) on Windows and Mac

* Visual Studio Code on Linux,

https://code.visualstudio.com/download

HOMEPAGE

Homepage,
" news,

* lectures,

* labs, and

= other resources

Canvas
* announcements, and

* handing in labs

http://www.danielhedin.net/dva339/

WHAT IS EXPECTED OF YOU?

Participate, ask questions, read the course material
* be active! there are no stupid questions!

Not all material can be covered by lectures
" read the suggested material before the lecture

This is a relatively programming heavy course
“lab 1 - two parts

* lab 2 - five parts
* start early, ask question, discuss with friends, meet the deadlines

The course is running in parallel with Parallel System, DVA336
* also a fairly programming intensive course.

* fun! but requires planning

00000000

0005050 10009050
OO0 D000

O

9

ORO050°00

AV AVAVAN

INTRODUCTION TO COMPILERS |

WHAT IS A COMPILER

A compiler takes a program in one
language, the source language
" preferably of high abstraction

and produces an equivalent program in
another language, the target language
* sometimes understandable by a computer

* binary, native code

" bytecode, to be run using an interpreter

Examples

= C# to CIL, Java to Java bytecode, C to binary,
Haskell to C, Haskell to binary, ...

High level — high
abstraction

Low level — low
abstraction

source program

|

target program

PROGRAMMING LANGUAGES

Study of programming languages relatively recent

= driven by the need for more expressive languages as computers and programs grew more complex
y P guag P prog g P

1°" generation: programming binary

2" generation: assembly code

3 generation: structured languages
* (Fortran, Ada, C, ...) Java, C#, Haskell, ML, F#, ...

" Increased productivity

= Reduced errors

Domain specific languages

PROGRAMMING LANGUAGES

The study of programming languages borrows from linguistics

" linguistics, scientific study of natural languages

Both ideas and terminology borrowed, but ...

" ... as is often the case with borrowed terminology the meaning is not always preserved entirely.

We can use previous knowledge of natural languages when approaching the subject
of programming languages

* while keeping in mind the possibility of terminological mismatch

Programming languages are formal languages
* DVA337 (last period ...)

* They are typically a subset of context-free languages (but not always)

WHY STUDY COMPILER THEQRY?

To be able to create language processors
* Parser for configuration files (e.g. XML)

* Translator from one language to another

* Command line interpreter

= Domain specific languages

Deeper understanding of compilers
* How to write efficient code
* Understand design decisions in a language

* Helps to become a better programmer

But most importantly — it’s funl!

When studying compiler theory

relate to your own experience with using compilers

PHASES OF A COMPILER

Typical phases of a real compiler

Frontend - machine independent
* Lexical analysis

* Syntax Analysis (Parsing)

* Semantic Analysis (Type checking)

* IR Generation

* Optimization

Backend - machine dependent
* Code generation
* Optimization

Each phase can contain a number of steps

character stream

|

Lexical Analyzer

T
token stream

f

Syntax Analyzer

T
syntax tree

{

Semantic Analyzer

T
syntax tree

|

Intermediate Code Generator

T
intermediate representation

Machine-Independent

Code Optimizer

T
intermediate representation

f

Code Generator

I
target-machine code

f

Machine-Dependent
Code Optimizer

T
target-machine code

frontend
~—— machine
independent

backend

~—— machine
dependent

PHASES IN THIS COURSE .

Lexical analysis

We must simplify y Tokens
" target stack machine instead of 3-operand Syntactic analysis
* no need for intermediate representation — code can easily be
AST
generated from AST v

. . . Type analysis
Lexical analysis (Lexing)

AST
Syntactic analysis (Parsing) \’
Optimization
Type analysis
v AST
Optimization
Code generation
Code generation (for stack machine) I

Stack machine code

LEXICAL ANALYSIS

Stream of (ASCIl) characters converted
to stream of tokens

" input to the next phase, the parser

Token types
* identifiers, ID
* numbers, NUM

" operators, OP

Token
" token type, and possibly

" attributes (semantic values)

position = initial + rate * 60

Lexical analysis

ID(position) OP(=) ID(initial) OP(+) ID(rate) OP(*) NUM(60)

position = initial + rate * 60

SYNTACTIC ANALYSIS

Lexical analysis

Parsing ID(position) OP(=) ID(initial) OP(+) ID(rate) OP(*) NUM(60)

Stream of tokens translated to abstract

syntax tree (AST) Syntactic analysis
" based on grammar

Abstract syntax tree
" structure encodes important information about ASN

program o

* assignment of addition expression to variable ID(position) ADD
* addition of variable and multiplication T
expression .
ID(initial
* multiplication of a variable and number () MUL
/\

Tree encodes evaluation order ID(rate) NUM(60)

TYPE ANALYSIS

Checks that all parts of the program are
type correct

" assignment of an integer addition to an integer
variable

Type analysis

" integer addition, since addition of an integer

variable and integer multiplication ASN
" integer multiplication, since multiplication of T T

integer variable and integer ID(position) : int ADD : int
May decorate the AST with type — T~

ID(initial) : int ~ MUL : int
/\
ID(rate) : int NUM(60) : int

information for later stages
" optimization

* code generation

OPTIMIZATION

Hard to do on AST

* most optimizations easier with data flow
information or on SSA form

Variants of the following possible
* Constant propagation

* Constant folding

* Common subexpression elimination

" Dead code elimination

* Tail recursion elimination

= Strength reduction

AST

Optimization

Optimized AST

ASN
/\

c 0 D E G E N E RAT I O N ID(position) : int ADD : int
/\
ID(initial) : int MUL : int
/\
Generates stack code from abstract ID(rate) : int NUM(60) : int

syntax tree

= stack machine

" type information may be needed to select Code generation
instructions

* RVALINT

* PUSHINT LVAL -1(FP)

= ASSINT RVALINT -2(FP)

RVALINT -3(FP)

Trac42 code PUSHINT 60

" local creation, built to illustrate important MUL
concepts ADD

ASSINT

COURSE OVERVIEW

Week 1

* lexing and parsing

Week 2

" predictive recursive descent, LR

Week 3

" lexer and parser generators, pretty printing,
visitors, and decoration

Week 4

" structural operational semantics, evaluators

Week 5

" type systems, type derivations, type checking

Week 6

* code generation

Week 7
* only Thursday Jan 3

* used as backup if needed

Week 8

= optimization, exam preparations

TODAY

Fundamentals of lexical analysis

Implementation of lexical analysis

AN

LEXICAL ANALYSIS

NATURAL LANGUAGES | i the eves of a NoN-LinGulsT

Study of languages is nothing new — predates computers by a couple of thousand
years.

Linguistics, scientific study of natural languages

Separates the form of the language from the meaning of the language
* syntax — the form

* semantics — the meaning

Syntax is split into lexical structure and grammatical structure
* lexical structure, the words, word classes, c.f., lexicon

= grammatical structure, how to build sentences, c.f., grammar

LEXICAL STRUCTURE

Lexical analysis is based on the lexical structure of program

* the 'words of the programming language'

Intuitively, can you identify some lexical components in a programming language of
choice?

LEXICAL STRUCTURE

Lexical analysis is based on the lexical structure of program

Lexical structure

" keywords: if while int ...
" operators: + - * / ++ ...
“ separators: () [1{},.;---

" identifiers: x y counter stmt1 ...
" numbers: 0 1 42

Notice the correspondence to words, word classes, and punctuation
= words: if while int + - * ... (but not separators)

* punctuation: () [1{} ..

* word classes: keywords, operators, separators, ...

WHAT ABOUT PUNCTUATION?

Why did we separate the punctuation from the words?

" in linguistics, part of the orthography, writing conventions

" not part of the grammar of the natural language (or the abstract syntax of a programming language)

Orthography important for understanding written language (parsing!)
" eats shoots and leaves

* eats, shoots, and leaves

" different meanings

No such separation for programming languages

= grammar of English closer to abstract syntax

We will come back to this later

AN NOTE ON TERMINOLOGY

Words of programming languages are sometimes called lexemes
" not the same meaning as in linguistics!

" (lexical token in Appel, tokens in other work, ...)

Word classes also have many different names
" token types, token categories, ...

But token also used as the name of what is produced by the lexer
* some risk of confusion!

In this course we will use lexical token, token type, and token
" following Appel

LEXICAL ANALYSIS

Programs are written using some character encoding
(ASCII or Unicode)

Programming language grammars expressed in terms of
* lexical tokens and token types

" expected input by parser/simpler than writing parser directly on
characters

Lexical analysis is the process, where
= a stream of characters is translated to

" a stream of tokens

A token is a pair consisting of
" the token type

" optional attributes providing additional information on the token

* ID(x), NUM(10), OP(+), SEP([)

position = initial + rate * 60

Lexical analysis

ID(position) OP(=) ID(initial) OP(+)
ID(rate) OP(*) NUM(60)

LEXICAL ANALYSIS

Lexical analysis is performed by scanning the character position = initial + rate * 60
stream

* identifying lexical tokens (lexemes), and
" outputting the corresponding token Lexical analysis

Whitespace removed

" seen as a separator, but generates no token ID(position) OP(=) ID(initial) OP(+)
Newlines (typically) removed in the same way as ID(rate) OP(*) NUM(60)
whitespace

" in some languages newlines matter

Comments removed
* // line comments

* /* inline comments */

EXERCISE

Given the token types

* keywords, identifiers, numbers, separators and operators

Tokenize “if (x < 3){y += x++; }”

TOKEN ATTRIBUTES

Token attributes carry information about the input needed later by phases

Consider the expression, 2 + 3

" the parser does not care about the actual numbers, only about the token type
" the parser may care about the operator, to encode precedence

* an evaluator needs information about the actual numbers and the actual operator to be able to
compute the result

Such information is stored in the attributes of the token

* also called semantic values, values that pertain to the meaning of the program rather than the syntax

Quuestion: can you think of more things to store about tokens that can be useful later
on¢

ERROR REPORTING

Parsing can fail — if the program is not a syntactically correct program

" parser expects a certain token, but receives another

We want to report

* where in the source code the error is (a simple ‘parse error’ on thousands of lines of code is not very
useful)

* and, maybe, what the parser expected

We need to be able to tie the offending token to the corresponding position in the
source code

* line number

= column number

ID(x, 1, 5) NUM(72, 3, 18)

SPECIFYING LEXICAL STRUCTURE

A lexer maps character streams to token streams
* by mapping lexical tokens to tokens

To do this we must know
= what lexical tokens there are, and

" how to create a token we must know the corresponding token type and the position in the source
How can we define which lexical tokens correspond to each token type?

Finite token types, simply enumerate
" keywords, separators, whitespace, newline, ...

= operators (for most languages, but some allow user defined operators)

But how do we handle infite token types?
* identifiers, numbers

SPECIFYING LEXICAL STRUCTURE

We use regular expressions!
* regular expression define regular languages

keywords: if | while | ...

whitespace: ' ' | \t
" space, tab

newline: \n | \r | \r\n

= UNIX, old Mac, Windows

numbers: [0-9]+
* one or more digits

identifiers: [a-zA-Z][a-zA-Z0-9]*

* |letter followed by zero or more letters or digits

REGULAR EXPRESSIONS

The language of regular expressions over an alphabet X is
r s:= ¢ xEZ|rr|r|r|r*|(r)
empty regular expression, €

character in alphabet, x € X

sequence, rr

option, r | r

repetition, r*

Whatis (0]1]2[3]4|5]6|7]8|9)(0]1|2]3]|4|5]|6|7|8]9)* 2

EXERCISE, DERIVED FORMS

Assuming we have regular expressions over ASCIl characters
r s:= € XEASCII|rr|r|r|r*|(r)

Can you express

" a range of characters, [a-2]
" one or more, r+
" optional, r?

“ not in range, ["a-2z]

PRACTICAL REGULAR EXPRESSIONS

Assume we want to write regular expressions over ASCIl characters

Some characters cannot be written and must be escaped
“\n, \r, \t,

Some characters are used to write the regular expression themselves and must be
escaped

AP (D TR G T A N S A -

" space

Examples

* a+b matches the string a or the string b

* a\+tb matches the string a+b

* "a+b" matches the string a+b

* \"a+b\" matches the string “a or the string b”

EXERCISE

What does the following regular expression define?
(+]=)2[0-9]1+\.[0-9]+((E|e) (+]|-)2[0-9]+)?

\ll[/\\ll\n]*\ll

SPECIFYING LEXICAL ANALYSIS

For each lexical token in the language define the token type

print KEYW
FINCIN) | SEP
\+|:= oP
[a-zA-Z][a-2A-20-9]* 1D
[0-9]+ NUM

Notice that some of the token types overlap. Is this a problem?
* KEYW and ID overlap completely

* ID and NUM overlap partially

AMBIGUITIES

Overlapping token types lead to ambiguities, more than one way to tokenize

Should "xyz123" be tokenized as
= ID(xyz123) or

JARVNER

Should “print1” be tokenized as print KEYW

“ ID(print1) or s INCITN) | SEP

- KEYW (print)NUM(1) \+|:= oP

[a-zA-Z][a-zA-Z0-9]* ID
Principle: longest match [0-9]1+ NUM

AMBIGUITIES

Overlapping token types lead to ambiguities, more than one way to tokenize

Should "print" be tokenized as

* |D(print)

EWro
print KEYW
P INCIN) | SEP
\+|:= OP

[a-2A-Z][a-2zA-Z0-9]* ID

0-91+ NUM
Principle: order of definition []

PRINCIPLES

Order of definition

* the first defined regular expression takes precedence
= KEYW over ID

Longest match

print KEYW
" 'r'no’r::h as far as possible SN | —
" 'xy" becomes ID(xy)
" " \+ | «= OP
= "xyz123" becomes ID(xyz123)
* "print" becomes KEYW/(print) [a-2A-Z][a-2A-Z0-9]* ID

[0-9]+ NUM

EXERCISE

Tokenize "print+1(;++\nprint1 x y"

" given longest match

* add position, line and column, to the token \n | \r\n | \r | \
print KEYW
To start s INCIN) | SEP

“ first token is KEYW(print, 1,1) \+|:= OP

[a-2A-Z][a-2zA-Z0-9]* ID
[0-9]+ NUM

SO FAR

lexical tokens /lexemes position = initial + rate * 60

token types

= keywords, operators, separators, identifiers, numbers, ... Lexical analysis

token attributes/semantic values

* the lexical token/lexeme ID(position) OP(=) ID(initial) OP(+)
* the line and column number ID(rate) OP(*) NUM(60)

regular expressions
* for specifying token types

DCILILICIKILICIKILIEK
COKISICIKIKICICICC
DCICILICIKILICIKILIEK

000202070 %2020 % 0%

IMPLEMENTING A LEXER | in on oblect orfened language

THE LEXER

The lexer should take a string and methods to get all tokens

%ublic class Lexer

public Lexer(string text)

{
}
public Token Next()
{
// returns next token
}

Eublic Token Peek()

// looks at the next token without forwarding

TOKENS IN PRACTICE

Tokens consist of

" a token type

" a lexeme

" the start position of the lexeme in the source code

public class Token

{
public
public

public
public

public

Type type;
string lexeme;

int line;
int column;

enum Type { KEYW, SEP, OP,

ID, NUM, EOF };

HOW TO PEEK?

public class Lexer

Simply buffer! ;

internal Token buf;

ublic Token Next()
Token t = Peek();

buf = null;
return t;

public Token Peek()

if (buf != null) { return buf; }
compute new token

HANDLING WHITE SPACE

Cannot simply remove, since we track | typically make use of a trim function
position in source that removes white-space and takes care
* must keep track of current line and column of the tracking

Whitespace, forwards column
= space, ' ', 1 character wide

void Trim() { ... }
* tab, \t, typically 8 characters wide

Newline, resets column, forwards line
* \r\n, only one newline!

“\r,

“\n,

MATCHING

How should we match the different
token types? string MatchIdentifier()

string MatchNumber ()

Use convenient match functions

* MatchIdentifier matches [a-zA- string Match(string[] lexemes)
Z][a-2zA-Z0-9]1* (longest matchl)

* MatchNumber matches [0-9]+

(longest match!) static string[] newline = { "\r\n", "\r", "\n" };
. . static string[] operators = { "+", ":=" };
= Match takes a list of strings and returns static string[] separators = { "(", ")", ",", ":" };

the first that matches

* All return string.Empty if no match

MATCHING

Using such matching functions it is easy to compute the next token

1. trim the input

2. if end of input generate EOF token

3. in order, generate token if match

print KEYW
1. match separators
° FINCIN) SEP
2. match operators
3. match identifiers \t|e= OP
1. is keyword? [a-2A-Z][a-z2A-Z0-9]* ID
4. match numbers [0-9]+ NUM

4. profit!

ERRORS

Error handling in a lexer is hard
= too little structure to be able to correct and continue

Simply throw an exception

public class LexerException : Exception

{

public LexerException(string message) : base(message)

{
}

DONE

That was Lab 1.1!
= well, apart from the missing code :D
* and writing tests

" use the Test1 1.exe to test your lexer

Use the time to familiarize yourselves with C#
* and Visual Studio or Visual Studio Code

Use Test1 1.exe to test your lexer
* yoU'll have to trust me — it doesn’t do anything bad
" sorry, can’t give you the source (it contains the solution)

* don’t hand in labs that do not pass at least a 100 tests

